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Outline

« Wake field implementation in Synergia
* Dipole instabilities in linear lattice

 Dipole instabilities with the nonlinear lens




Space charge forces

 The space charge solver and the wake implementation are not independent

* Force acting on a particle due to the electromagnetic field created by the
other particles:
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Wake fields

Induced currents
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- @,Q - charge of the source and witness particle

- X,Y - displacements of the source particle

© X,y - displacements of the witness particle

© Z - distance between the source and the witness particles




Impedance in IOTA straight sections
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Transverse impedance
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Wake fields
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 Wake fields
are small in
IOTA
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Coasting beam dipole instabilities

 The modes are characterized by the wave nhumber n

Dn(z,t):AeXp(iannZ—iQt)

 The growth rate is proportional to the real part of impedance

Nroc® RZ (noy+w,)
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» The beam is unstable when ReZ(nw,+) <0, i.e. n<-w/w,

in IOTA case n< -5




n=14 Space charge neglected
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Growing rate vs intensity




Instability can be seen in the emittance
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Nonlinear lens stabilizes the beam
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Nonlinear lens




What is not right?

turn n-1 (previous)
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contribution from previous turns:

In-bunch wake:
beam seen as a whole

slices

* For coasting beams the end and the beginning of the bunch are treated

differently
 The modes are not commensurate with the lattice and not described by a

wave number n
 The simulation is more appropriate for a long beam which does not fill the

entire ring




Conclusions

 The nonlinear insert strongly stabilize the dipole instabilities
iInduced by the wake field







Revolution frequency w0=2 pi beta ¢/L=3.4MHz, nu0=0.54MHz
Linear lattice rms emittance: ex=ey=5 mm mrad, chroms=-11, -6.85

Nonlinear length rms emittance: ex=2 mm mrad, ey=4.6 mm mrad
Nonlinear tunes: Qx=5.402, Qy=5.134, chroms=-10.9, -9,8




Nonlinear lens
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